.. _graphics-COP_1d_plot: Global average annual temperature plot ====================================== Produces a time-series plot of North American temperature forecasts for 2 different emission scenarios. Constraining data to a limited spatial area also features in this example. The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were derived using the IMAGE Integrated Assessment Model (Johns et al. 2010; Lowe et al. 2009). References ---------- Johns T.C., et al. (2010) Climate change under aggressive mitigation: The ENSEMBLES multi-model experiment. Climate Dynamics (submitted) Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden, 2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21. .. plot:: /net/home/h06/ecamp/nounpack_iris/docs/iris/example_code/graphics/COP_1d_plot.py :: """ Global average annual temperature plot ====================================== Produces a time-series plot of North American temperature forecasts for 2 different emission scenarios. Constraining data to a limited spatial area also features in this example. The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were derived using the IMAGE Integrated Assessment Model (Johns et al. 2010; Lowe et al. 2009). References ---------- Johns T.C., et al. (2010) Climate change under aggressive mitigation: The ENSEMBLES multi-model experiment. Climate Dynamics (submitted) Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden, 2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21. """ import os.path import numpy import matplotlib.pyplot as plt import iris import iris.coords as coords import iris.plot as iplt import iris.quickplot as qplt import iris.analysis.calculus import matplotlib.dates as mdates def main(): # Load data into three Cubes, one for each set of PP files e1 = iris.load_strict(iris.sample_data_path('E1_north_america.nc')) a1b = iris.load_strict(iris.sample_data_path('A1B_north_america.nc')) # load in the global pre-industrial mean temperature, and limit the domain to # the same North American region that e1 and a1b are at. north_america = iris.Constraint( longitude=lambda v: 225 <= v <= 315, latitude=lambda v: 15 <= v <= 60, ) pre_industrial = iris.load_strict(iris.sample_data_path('pre-industrial.pp'), north_america ) pre_industrial_mean = pre_industrial.collapsed(['latitude', 'longitude'], iris.analysis.MEAN) e1_mean = e1.collapsed(['latitude', 'longitude'], iris.analysis.MEAN) a1b_mean = a1b.collapsed(['latitude', 'longitude'], iris.analysis.MEAN) # Show ticks 30 years apart plt.gca().xaxis.set_major_locator(mdates.YearLocator(30)) # Label the ticks with year data plt.gca().format_xdata = mdates.DateFormatter('%Y') # Plot the datasets qplt.plot(e1_mean, coords=['time'], label='E1 scenario', lw=1.5, color='blue') qplt.plot(a1b_mean, coords=['time'], label='A1B-Image scenario', lw=1.5, color='red') # Draw a horizontal line showing the pre industrial mean plt.axhline(y=pre_industrial_mean.data, color='gray', linestyle='dashed', label='pre-industrial', lw=1.5) # Establish where r and t have the same data, i.e. the observations common = numpy.where(a1b_mean.data == e1_mean.data)[0] observed = a1b_mean[common] # Plot the observed data qplt.plot(observed, coords=['time'], label='observed', color='black', lw=1.5) # Add a legend and title plt.legend(loc="upper left") plt.title('North American mean air temperature', fontsize=18) plt.xlabel('Time / year') plt.grid() iplt.show() if __name__ == '__main__': main()